Контрольная работа № 1

1 вариант.

- 1). Начертите два неколлинеарных вектора \vec{a} и \vec{e} . Постройте векторы, равные:
- a). $\frac{1}{2}\vec{a} + 3\vec{e}$; 6). $2\vec{e} \vec{a}$
- 2). На стороне BC ромба ABCD лежит точкаK такая, что BK = KC, O точка пересечения диагоналей. Выразите векторы \overrightarrow{AO} , \overrightarrow{AK} , \overrightarrow{KD} через векторы $\overrightarrow{a} = \overrightarrow{AB}$ и $\overrightarrow{e} = \overrightarrow{AD}$.
- 3). В равнобедренной трапеции высота делит большее основание на отрезки, равные 5 и 12 см. Найдите среднюю линию трапеции.
- 4). * В треугольнике $ABC\ O$ точка пересечения медиан. Выразите вектор \overrightarrow{AO} через векторы $\overrightarrow{a} = \overrightarrow{AB}$ и $\overrightarrow{e} = \overrightarrow{AC}$.

Контрольная работа № 1

2 вариант

- 1). Начертите два неколлинеарных вектора \vec{m} и \vec{n} . Постройте векторы, равные:
- a). $\frac{1}{3}\vec{m} + 2\vec{n}$; 6). $3\vec{n} \vec{m}$
- 2). На стороне CD квадрата ABCD лежит точка P такая, что CP = PD, O точка пересечения диагоналей. Выразите векторы \overrightarrow{BO} , \overrightarrow{BP} , \overrightarrow{PA} через векторы $\overrightarrow{x} = \overrightarrow{BA}$ и $\overrightarrow{y} = \overrightarrow{BC}$.
- 3). В равнобедренной трапеции один из углов равен 60^{0} , боковая сторона равна 8 *см*, а меньшее основание 7 *см*. Найдите среднюю линию трапеции.
- 4). * В треугольнике MNK O точка пересечения медиан, $\overrightarrow{MN} = \vec{x}$, $\overrightarrow{MK} = \vec{y}$, $\overrightarrow{MO} = k \cdot (\vec{x} + \vec{y})$. Найдите число k.

Контрольная работа № 2

1 вариант.

- 1). Найдите координаты и длину вектора \vec{a} , если $\vec{a} = \frac{1}{3}\vec{m} \vec{n}, \quad \vec{m} \{-3;6\}, \quad \vec{n} \{2;-2\}.$
- 2). Напишите уравнение окружности с центром в точке A(-3;2), проходящей через точку B(0;-2).
- 3). Треугольник MNK задан координатами своих вершин: M(-6; 1), N(2; 4), K(2; -2).
- *а*). Докажите, что $_{\Lambda}MNK$ равнобедренный;
- б). Найдите высоту, проведённую из вершины M.
- 4). * Найдите координаты точки N, лежащей на оси абсцисс и равноудалённой от точек P и K, если P(-1;3) и K(0;2).

Контрольная работа № 2

2 вариант.

- 1). Найдите координаты и длину вектора \vec{e} , если $\vec{e} = \frac{1}{2}\vec{c} \vec{d}\,, \quad \vec{c} \ \{6\,;-2\}, \quad \vec{d} \ \{1\,;-2\}.$
- 2). Напишите уравнение окружности с центром в точке C(2;1), проходящей через точку D(5;5).
- 3). Треугольник CDE задан координатами своих вершин: C(2; 2), D(6; 5), E(5; -2).
- *а*). Докажите, что $_{\Delta}CDE$ равнобедренный;
- б). Найдите биссектрису, проведённую из вершины C.
- 4). * Найдите координаты точки A, лежащей на оси ординат и равноудалённой от точек B и C, если B(1;-3) и C(2;0).

Контрольная работа № 3

1 вариант

- 1). В треугольнике $ABC \angle A = 45^{\circ}$, $\angle B = 60^{\circ}$, $BC = 3\sqrt{2}$. Найдите AC.
- 2). Две стороны треугольника равны $7\ cm$ и $8\ cm$, а угол между ними равен 120^{0} . Найдите третью сторону треугольника.
- 3). Определите вид треугольника *ABC*, если *A* (*3*; *9*), *B* (*0*; *6*), *C* (*4*; *2*).
- 4). * В $\triangle ABC$ AB = BC, $\angle CAB = 30^{\circ}$, AE биссектриса, BE = 8 *см*. Найдите площадь треугольника ABC.

Контрольная работа № 3

2 вариант

- 1). В треугольнике $CDE \angle C = 30^{\circ}$, $\angle D = 45^{\circ}$, $CE = 5\sqrt{2}$. Найдите DE.
- 2). Две стороны треугольника равны $5 \, cm$ и $7 \, cm$, а угол между ними равен 60^{0} . Найдите третью сторону треугольника.
- 3). Определите вид треугольника *ABC*, если *A* (*3*; *9*), *B* (*0*; *6*), *C* (*4*; *2*).
- 4). * В ромбе ABCD AK биссектриса угла CAB, $\angle BAD = 60^{0}$, BK = 12 см. Найдите площадь ромба.

Контрольная работа № 4

1 вариант

- 1). Найдите площадь круга и длину ограничивающей его окружности, если сторона правильного треугольника, вписанного в него, равна $5\sqrt{3}$ *см*.
- 2). Вычислите длину дуги окружности с радиусом $4 \, cm$, если её градусная мера равна 120^{0} . Чему равна площадь соответствующего данной дуге кругового сектора?
- 3). Периметр правильного треугольника, вписанного в окружность, равен $6\sqrt{3}$ *см*. Найдите периметр правильного шестиугольника, описанного около той же окружности.

Контрольная работа № 4

2 вариант

- 1). Найдите площадь круга и длину ограничивающей его окружности, если сторона квадрата, описанного около него, равна 6 см.
- 2). Вычислите длину дуги окружности с радиусом $10 \, cm$, если её градусная мера равна 150^{0} . Чему равна площадь соответствующего данной дуге кругового сектора?
- 3). Периметр квадрата, описанного около окружности, равен $16 \ \partial m$. Найдите периметр правильного пятиугольника, вписанного в эту же окружность.

Контрольная работа № 5

1 вариант

- 1). Начертите ромб ABCD. Постройте образ этого ромба:
- а). при симметрии относительно точкиC;
- б).при симметрии относительно прямой АВ;
- в). При параллельном переносе на вектор \overline{AC} ;
- г). При повороте вокруг точки D на 60^{0} по часовой стрелке.
- 2). Докажите, что прямая, содержащая середины двух параллельных хорд окружности, проходит через её центр.
- 3). * Начертите два параллельных отрезка, длины которых равны.начертите точку, являющуюся центром симметрии, при котором один отрезок отображается на другой.

Контрольная работа № 5

2 вариант

- 1). Начертите параллелограмм *ABCD*. Постройте образ этого параллелограмма:
- а). при симметрии относительно точки D;
- б). при симметрии относительно прямой CD;
- в). При параллельном переносе на вектор \overline{BD} ;
- г). При повороте вокруг точкиA на 45^{0} против часовой стрелки.
- 2). Докажите, что прямая, содержащая середины противоположных сторон параллелограмма, проходит через точку пересечения его диагоналей.
- 3).* Начертите два параллельных отрезка, длины которых равны. Постройте центр поворота, при котором один отрезок отображается на другой.